Tesis:
Contribuciones al análisis de problemas supercomplejos de toma de decisiones
- Autor: BIELZA LOZOYA, María Concepción
- Título: Contribuciones al análisis de problemas supercomplejos de toma de decisiones
- Fecha: 1996
- Materia: Sin materia definida
- Escuela: FACULTAD DE INFORMATICA
- Departamentos: INTELIGENCIA ARTIFICIAL
- Acceso electrónico: http://oa.upm.es/34823/
- Director/a 1º: RIOS INSUA, David
- Resumen: Los fundamentos de la Teoría de la Decisión Bayesiana proporcionan un marco coherente en el que se pueden resolver los problemas de toma de decisiones. La creciente disponibilidad de ordenadores potentes está llevando a tratar problemas cada vez más complejos con numerosas fuentes de incertidumbre multidimensionales; varios objetivos conflictivos; preferencias, metas y creencias cambiantes en el tiempo y distintos grupos afectados por las decisiones. Estos factores, a su vez, exigen mejores herramientas de representación de problemas; imponen fuertes restricciones cognitivas sobre los decisores y conllevan difíciles problemas computacionales. Esta tesis tratará estos tres aspectos. En el Capítulo 1, proporcionamos una revisión crítica de los principales métodos gráficos de representación y resolución de problemas, concluyendo con algunas recomendaciones fundamentales y generalizaciones. Nuestro segundo comentario nos lleva a estudiar tales métodos cuando sólo disponemos de información parcial sobre las preferencias y creencias del decisor. En el Capítulo 2, estudiamos este problema cuando empleamos diagramas de influencia (DI). Damos un algoritmo para calcular las soluciones no dominadas en un DI y analizamos varios conceptos de solución ad hoc. El último aspecto se estudia en los Capítulos 3 y 4. Motivado por una aplicación de gestión de embalses, introducimos un método heurístico para resolver problemas de decisión secuenciales. Como muestra resultados muy buenos, extendemos la idea a problemas secuenciales generales y cuantificamos su bondad. Exploramos después en varias direcciones la aplicación de métodos de simulación al Análisis de Decisiones. Introducimos primero métodos de Monte Cario para aproximar el conjunto no dominado en problemas continuos. Después, proporcionamos un método de Monte Cario basado en cadenas de Markov para problemas con información completa con estructura general: las decisiones y las variables aleatorias pueden ser continuas, y la función de utilidad puede ser arbitraria. Nuestro esquema es aplicable a muchos problemas modelizados como DI. Finalizamos con un capítulo de conclusiones y problemas abiertos.