Tesis:

Clasificación Supervisada basada en Redes Bayesianas. Aplicación en Biología Computacional.


  • Autor: ROBLES FORCADA, Víctor

  • Título: Clasificación Supervisada basada en Redes Bayesianas. Aplicación en Biología Computacional.

  • Fecha: 2003

  • Materia: Sin materia definida

  • Escuela: FACULTAD DE INFORMATICA

  • Departamentos: ARQUITECTURA Y TECNOLOGIA DE SISTEMAS INFORMATICOS

  • Acceso electrónico:

  • Director/a 1º: MIGUEL ANASAGASTI, Pedro de
  • Director/a 2º: LARRAÑAGA MUGICA, Pedro

  • Resumen: Los trabajos realizados en esta tesis se encuadran dentro de dos grandes campos: la clasificación supervisada con modelos gráficos probabilísticos y su aplicación a la biología computacional. La idea fundamental de las propuestas que se han realizado dentro del campo de la clasificación supervisada con modelos gráficos probabilístico, es el uso de los algoritmos heurísticos de optimización EDA en la búsqueda de estructuras de redes Bayesianas para clasificación. Gracias a la aplicación de los algoritmos EDA, se ha desarrollado un nuevo algoritmo de clasificación supervisada denominado Interval Estimation naïve-Bayes y se han mejorado varios de los algoritmos de clasificación propuestos en la literatura. Los resultados experimentales obtenidos han sido muy satisfactorios, ya que demuestran la superioridad de nuestra idea. Además, con el objetivo de mejorar su rendimiento, se ha desarrollado una versión paralela de nuestro algoritmo, el Parallel Interval Estimation naïve-Bayes. Las pruebas experimentales han superado nuestras expectativas iniciales, ya que no sólo se ha logrado un speedup superlineal, si no que se han obtenido mejores resultados que en la versión secuencial. En el campo de la biología computacional la predicción de la estructura secundaria de las proteínas es de vital importancia, ya que proporciona un punto de partida para la predicción de su estructura tridimensional, lo cual ayuda a la determinación de sus funciones. Dentro de este campo, se ha estudiado la aplicación de los métodos de clasificación supervisada en dos niveles diferentes. Por un lado, se ha desarrollado un nuevo método basado en redes Bayesianas, para la predicción de la estructura secundaria de las proteínas. Aunque en primera instancia los resultados obtenidos no han sido brillantes, en esta tesis se sugieren refinamientos de la idea original que, confiamos, los mejorarán. Por otra parte, se ha creado un multiclasificador con los métodos de predicción existentes, basado en el paradigma stacked generalization. Los resultados obtenidos por este multiclasificador han sido altamente satisfactorios, ya que se han mejorado los resultados de los métodos individuales. Como resultado de las propuestas realizadas han surgido multitud de futuras líneas de investigación, que se recogen a lo largo de esta tesis.