Tesis:
Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling.
- Autor: JEVTIC, Aleksandar
- Título: Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling.
- Fecha: 2011
- Materia: Sin materia definida
- Escuela: E.T.S. DE INGENIEROS DE TELECOMUNICACION
- Departamentos: SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES
- Acceso electrónico: http://oa.upm.es/7206/
- Director/a 1º: ANDINA DE LA FUENTE, Diego
- Director/a 2º: JAMSHIDI, Mo
- Resumen: Los enjambres de animales en la naturaleza son capaces de adaptarse a cambios dinamicos en su entorno y, por medio de la cooperación, pueden resolver problemas ´ cruciales para su supervivencia. Unicamente por medio de interacciones locales con otros miembros del enjambre y con el entorno, pueden lograr un objetivo común de forma más eficiente que lo haría un solo individuo. Este comportamiento problema-resolutivo que es resultado de la multiplicidad de interacciones se denomina Inteligencia de Enjambre. Los modelos matemáticos de comportamiento de enjambres en entornos naturales fueron propuestos inicialmente para resolver problemas de optimización. Sin embargo, esta aproximación descentralizada puede ser una herramienta valiosa en una variedad de aplicaciones donde patrones globales emergentes representan una solución de las tareas actuales. Aunque en la literatura se muestra la utilidad de los métodos de Inteligencia de Enjambre, no existe un entorno de trabajo que facilite su diseño. En esta memoria de tesis proponemos una nueva metodologia general de diseño para herramientas de Inteligencia de Enjambre. Desarrollamos herramientas noveles que representan ejem-plos ilustrativos de su implementación. Probamos la metodología propuesta en varios dominios definiendo un espacio discreto en el que los miembros del enjambre pueden moverse, modificando las reglas de las interacciones locales y fijando la función objetivo adecuada para evaluar las soluciones. La memoria de tesis presenta un conjunto de casos de estudio y se centra en dos aproximaciones generales. Una aproximación es aplicar Inteligencia de Enjambre como herramienta de optimización y extracción de características mientras que la otra es modelar sistemas multi-agente de tal manera que se asemejen a enjambres de animales en la naturaleza a los que se les confiere la habilidad de ejecutar autónomamente la tarea. Los enjambres artificiales están diseñados para ser autónomos, escalables, robustos y adaptables a los cambios en su entorno. En este trabajo, presentamos métodos que explotan una o más de estas características. Primero, validamos la metodología propuesta en un escenario del mundo real visto como un problema de optimización combinatoria. Después, proponemos un conjunto de herramientas noveles para ex-tracción de características, en concreto la detección adaptativa de bordes y el enlazado de bordes rotos en imágenes digitales, y el agrupamiento de datos para segmentación de imágenes. Finalmente, proponemos un algoritmo escalable para la asignación distribuida de tareas en sistemas multi-agente aplicada a enjambres de robots. La metodología general recién propuesta ofrece una guía para futuros desarrolladores deherramientas de Inteligencia de Enjambre.