Tesis:
Estudio sobre propagación atmosférica en la banda de los THz: influencia de gases y nubes en 100 y 300 GHz.
- Autor: SILES SORIA, Gustavo Adolfo
- Título: Estudio sobre propagación atmosférica en la banda de los THz: influencia de gases y nubes en 100 y 300 GHz.
- Fecha: 2012
- Materia: Sin materia definida
- Escuela: E.T.S. DE INGENIEROS DE TELECOMUNICACION
- Departamentos: SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES
- Acceso electrónico: http://oa.upm.es/14371/
- Director/a 1º: RIERA SALÍS, José Manuel
- Resumen: La presente Tesis Doctoral fue desarrollada en el marco del proyecto Consolider-Ingenio 2010 CSD2008-00068 (TeraSense), financiado por el Ministerio de Ciencia e Innovación de España. Dentro este contexto, el grupo GTIC-Radiocomunicaciones de la Universidad Politécnica de Madrid (UPM), ha llevado a cabo una serie de estudios, los cuales se centran específicamente en propagación atmosférica bajo condiciones de ausencia de lluvia en 100 y 300 GHz. Durante la primera etapa de esta investigación se ha llevado a cabo la caracterización y estimación de la atenuación total atmosférica y temperatura de brillo en ambas frecuencias, usando para ello perfiles atmosféricos. Con este propósito, se han obtenido datos de sondeos realizados en la estación de Madrid/Barajas, correspondientes a un periodo de 5 años. A partir de esta base de datos, así como de modelos de estimación, y asumiendo la validez de la aproximación de Rayleigh hasta 300 GHz, se han calculado las distribuciones acumuladas anuales de gases, nubes, y atenuación total, además de los correspondientes niveles de temperatura de brillo. Los principales resultados muestran que, a medida que aumenta la frecuencia, el vapor de agua tiene una fuerte influencia negativa, la cual es claramente dominante en 300 GHz. Así mismo, los estadísticos anuales de temperatura de brillo en 100 GHz han mostrado que la estimación de la atenuación total, a partir de medidas radiométricas, podría realizarse durante la mayor parte del tiempo, salvo en condiciones de lluvia. En 300 GHz, esta estimación sería difícil de realizar a partir de esta técnica, siendo posible únicamente durante periodos caracterizados por bajas concentraciones de vapor de agua en la atmósfera y ausencia de precipitaciones. Se ha introducido en esta investigación un método para identificar la presencia de condiciones de lluvia durante la realización de un sondeo, con el objetivo de descartar estos eventos de los estadísticos anuales de atenuación en ambas frecuencias. Este tipo de escenarios son generalmente evitados durante la realización de medidas radiométricas o cálculos basados en datos de sondeos. El procedimiento de detección se basa en el análisis de un conjunto de parámetros, algunos de ellos extraídos de observaciones sinópticas de superficie, además de la definición de un umbral de contenido integrado de agua líquida, ILWC. El funcionamiento del método ha sido evaluado bajo diferentes condiciones climatológicas, correspondientes a tres estaciones diferentes en España, donde se verificó también la existencia de datos pluviométricos. El uso del método ha demostrado que, en ausencia de registros de intensidad de lluvia, puede ser una herramienta útil de detección, cuyo comportamiento es conservador, debido a que el número de eventos que descarta es siempre mayor que el observado por un pluviómetro. Los resultados que se obtienen son buenos cuando se comparan las distribuciones acumuladas anuales de atenuación total obtenidas excluyendo los eventos detectados por el método y por los registros pluviométricos. En colaboración con el Grupo de Microondas y Radar de la UPM, se ha realizado una campaña de medidas radiométricas en 99 GHz, entre el 11 y el 24 de abril de 2012, con el fin de estimar la atenuación total a lo largo de un trayecto inclinado. Las series temporales obtenidas son consistentes con lo que se esperaba de este tipo de medidas: un nivel de referencia de baja atenuación en ausencia de nubes o lluvia, y aparentemente una buena compensación de las variaciones en la ganancia del receptor gracias a un procedimiento manual de calibraciones con carga caliente. Así mismo, se han observado claramente los efectos de la presencia de nubes sobre los resultados, hecho que confirma la mayor sensibilidad de las medidas en esta frecuencia a la presencia de agua líquida, en comparación con medidas simultáneas realizadas por un radiómetro en 19.7 GHz. Finalmente, se han observado un buen nivel de correspondencia entre los valores de atenuación estimados por el radiómetro en 99 GHz y aquellos estimados mediante sondeos meteorológicos, lo cual constituye una conclusión valiosa de cara a futuras campañas de medidas de mayor duración.