Tesis:
Modelling of Landslides propagation with SPH: effects of rheology and pore water pressure.
- Autor: DUTTO, Paola
- Título: Modelling of Landslides propagation with SPH: effects of rheology and pore water pressure.
- Fecha: 2014
- Materia: Sin materia definida
- Escuela: E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS
- Departamentos: MATEMATICA E INFORMATICA APLICADAS A LAS INGENIERIAS CIVIL Y NAVAL
- Acceso electrónico: http://oa.upm.es/33166/
- Director/a 1º: PASTOR PEREZ, Manuel Tomás
- Director/a 2º: MARTIN STICKLE, Miguel
- Resumen: El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rapidos de ladera a través del metodo sin malla Smoothed Particle Hydrodynamics (SPH). Este metodo tiene la gran ventaja de permitir el analisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de metodos numericos con mallas tal como el metodo de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v-p_w, que representa el comportamiento, expresado en terminos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de particulas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: - la ecuación de balance de masa de la fase del fluido intersticial, - la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, - la ecuación constitutiva y - una ecuación cinemática. Debido a sus propriedades geometricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numericamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numericamente deslizamientos rapidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplastico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analitica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, monstrando como los resultados obtenidos simulan con exito estos tipos de riesgos naturales.