Tesis:

Design, Technology and Characterization of Micromechanised Sensors and Actuators for Harsh Environments


  • Autor: SILLERO HERRERO, Eugenio

  • Título: Design, Technology and Characterization of Micromechanised Sensors and Actuators for Harsh Environments

  • Fecha: 2015

  • Materia: Sin materia definida

  • Escuela: E.T.S. DE INGENIEROS DE TELECOMUNICACION

  • Departamentos: INGENIERIA ELECTRONICA

  • Acceso electrónico: http://oa.upm.es/39392/

  • Director/a 1º: CALLE GÓMEZ, Fernando

  • Resumen: Los sistemas micro electro mecánicos (MEMS) han demostrado ser una exitosa familia de dispositivos que pueden usarse como plataforma para el desarrollo de dispositivos con aplicaciones en óptica, comunicaciones, procesado de señal y sensorización. Los dispositivos MEMS estándar suelen estar fabricados usando tecnología de silicio. Sin embargo, el rendimiento de estos MEMS se puede mejorar si se usan otros materiales. Por ejemplo, el diamante nanocristalino (NCD) ofrece unas excelentes propiedades mecánicas, transparencia y una superficie fácil de funcionalizar. Por otro lado, el sistema de materiales (In; Ga; Al)N, los materiales IIIN, se pueden usar para producir estructuras monocristalinas con alta sensibilidad mecánica y química. Además, el AlN se puede depositar por pulverización catódica reactiva sobre varios substratos, incluyendo NCD, para formar capas policristalinas orientadas con alta respuesta piezoeléctrica. Adicionalmente, tanto el NCD como los materiales III-N muestran una gran estabilidad térmica y química, lo que los hace una elección idónea para desarrollar dispositivos para aplicaciones para alta temperatura, ambientes agresivos e incluso para aplicaciones biocompatibles. En esta tesis se han usado estos materiales para el diseño y medición de demostradores tecnológicos. Se han perseguido tres objetivos principales: _ Desarrollo de unos procesos de fabricación apropiados. _ Medición de las propiedades mecánicas de los materiales y de los factores que limitan el rendimiento de los dispositivos. _ Usar los datos medidos para desarrollar dispositivos demostradores complejos. En la primera parte de esta tesis se han estudiado varias técnicas de fabricación. La estabilidad de estos materiales impide el ataque y dificulta la producción de estructuras suspendidas. Los primeros capítulos de esta disertación se dedican al desarrollo de unos procesos de transferencia de patrones por ataque seco y a la optimización del ataque húmedo sacrificial de varios substratos propuestos. Los resultados de los procedimientos de ataque se presentan y se describe la optimización de las técnicas para la fabricación de estructuras suspendidas de NCD y materiales III-N. En un capítulo posterior se estudia el crecimiento de AlN por pulverización catódica. Como se ha calculado en esta disertación para obtener una actuación eficiente de MEMS, las capas de AlN han de ser finas, típicamente d < 200 nm, lo que supone serias dificultades para la obtención de capas orientadas con respuesta piezoeléctrica. Las condiciones de depósito se han mapeado para identificar las fronteras que proporcionan el crecimiento de material orientado desde los primeros pasos del proceso. Además, durante la optimización de los procesos de ataque se estudió un procedimiento para fabricar películas de GaN nanoporoso. Estas capas porosas pueden servir como capas sacrificiales para la fabricación de estructuras suspendidas de GaN con baja tensión residual o como capas para mejorar la funcionalización superficial de sensores químicos o biológicos. El proceso de inducción de poros se discutirá y también se presentarán experimentos de ataque y funcionalización. En segundo lugar, se han determinado las propiedades mecánicas del NCD y de los materiales III-N. Se han fabricado varias estructuras suspendidas para la medición del módulo de Young y de la tensión residual. Además, las estructuras de NCD se midieron en resonancia para calcular el rendimiento de los dispositivos en términos de frecuencia y factor de calidad. Se identificaron los factores intrínsecos y extrínsecos que limitan ambas figuras de mérito y se han desarrollado modelos para considerar estas imperfecciones en las etapas de diseño de los dispositivos. Por otra parte, los materiales III-N normalmente presentan grandes gradientes de deformación residual que causan la deformación de las estructuras al ser liberadas. Se han medido y modelado estos efectos para los tres materiales binarios del sistema para proporcionar puntos de interpolación que permitan predecir las características de las aleaciones del sistema III-N. Por último, los datos recabados se han usado para desarrollar modelos analíticos y numéricos para el diseño de varios dispositivos. Se han estudiado las propiedades de transducción y se proporcionan topologías optimizadas. En el último capítulo de esta disertación se presentan diseños optimizados de los siguientes dispositivos: _ Traviesas y voladizos de AlN=NCD con actuación piezoeléctrica aplicados a nanoconmutadores de RF para señales de alta potencia. _ Membranas circulares de AlN=NCD con actuación piezoeléctrica aplicadas a lentes sintonizables. _ Filtros ópticos Fabry-Pérot basados en cavidades aéreas y membranas de GaN actuadas electrostáticamente. En resumen, se han desarrollado unos nuevos procedimientos optimizados para la fabricación de estructuras de NCD y materiales III-N. Estas técnicas se han usado para producir estructuras que llevaron a la determinación de las principales propiedades mecánicas y de los parámetros de los dispositivos necesarios para el diseño de MEMS. Finalmente, los datos obtenidos se han usado para el diseño optimizado de varios dispositivos demostradores. ABSTRACT Micro Electro Mechanical Systems (MEMS) have proven to be a successful family of devices that can be used as a platform for the development of devices with applications in optics, communications, signal processing and sensorics. Standard MEMS devices are usually fabricated using silicon based materials. However, the performance of these MEMS can be improved if other material systems are used. For instance, nanocrystalline diamond (NCD) offers excellent mechanical properties, optical transparency and ease of surface functionalization. On the other hand, the (In; Ga; Al)N material system, the III-N materials, can be used to produce single crystal structures with high mechanical and chemical sensitivity. Also, AlN can be deposited by reactive sputtering on various substrates, including NCD, to form oriented polycrystalline layers with high piezoelectric response. In addition, both NCD and III-N materials exhibit high thermal and chemical stability, which makes these material the perfect choice for the development of devices for high temperatures, harsh environments and even biocompatible applications. In this thesis these materials have been used for the design and measurement of technological demonstrators. Three main objectives have been pursued: _ Development of suitable fabrication processes. _ Measurement of the material mechanical properties and device performance limiting factors. _ Use the gathered data to design complex demonstrator devices. In a first part of the thesis several fabrication processes have been addressed. The stability of these materials hinders the etching of the layers and hampers the production of free standing structures. The first chapters of this dissertation are devoted to the development of a dry patterning etching process and to sacrificial etching optimization of several proposed substrates. The results of the etching processes are presented and the optimization of the technique for the manufacturing of NCD and III-N free standing structures is described. In a later chapter, sputtering growth of thin AlN layers is studied. As calculated in this dissertation, for efficient MEMS piezoelectric actuation the AlN layers have to be very thin, typically d < 200 nm, which poses serious difficulties to the production of c-axis oriented material with piezoelectric response. The deposition conditions have been mapped in order to identify the boundaries that give rise to the growth of c-axis oriented material from the first deposition stages. Additionally, during the etching optimization a procedure for fabricating nanoporous GaN layers was also studied. Such porous layers can serve as a sacrificial layer for the release of low stressed GaN devices or as a functionalization enhancement layer for chemical and biological sensors. The pore induction process will be discussed and etching and functionalization trials are presented. Secondly, the mechanical properties of NCD and III-N materials have been determined. Several free standing structures were fabricated for the measurement of the material Young’s modulus and residual stress. In addition, NCD structures were measured under resonance in order to calculate the device performance in terms of frequency and quality factor. Intrinsic and extrinsic limiting factors for both figures were identified and models have been developed in order to take into account these imperfections in the device design stages. On the other hand, III-N materials usually present large strain gradients that lead to device deformation after release. These effects have been measured and modeled for the three binary materials of the system in order to provide the interpolation points for predicting the behavior of the III-N alloys. Finally, the gathered data has been used for developing analytic and numeric models for the design of various devices. The transduction properties are studied and optimized topologies are provided. Optimized design of the following devices is presented at the last chapter of this dissertation: _ AlN=NCD piezoelectrically actuated beams applied to RF nanoswitches for large power signals. _ AlN=NCD piezoelectrically actuated circular membranes applied to tunable lenses. _ GaN based air gap tunable optical Fabry-Pérot filters with electrostatic actuation. On the whole, new optimized fabrication processes has been developed for the fabrication of NCD and III-N MEMS structures. These processing techniques was used to produce structures that led to the determination of the main mechanical properties and device parameters needed for MEMS design. Lastly, the gathered data was used for the design of various optimized demonstrator devices.