<< Volver atrás

Tesis:

Monitorización de estructuras aeronáuticas mediante técnicas de inteligencia artificial


  • Autor: GARCÍA ALONSO, Jaime

  • Título: Monitorización de estructuras aeronáuticas mediante técnicas de inteligencia artificial

  • Fecha: 2016

  • Materia: Sin materia definida

  • Escuela: E.T.S. DE INGENIEROS AERONAUTICOS

  • Departamentos: MATERIALES Y PRODUCCION AEROESPACIAL

  • Acceso electrónico: http://oa.upm.es/39487/

  • Director/a 1º: GÜEMES GORDO, Jesús Alfredo
  • Director/a 2º: FERNÁNDEZ LÓPEZ, Antonio

  • Resumen: Una de las barreras para la aplicación de las técnicas de monitorización de la integridad estructural (SHM) basadas en ondas elásticas guiadas (GLW) en aeronaves es la influencia perniciosa de las condiciones ambientales y de operación (EOC). En esta tesis se ha estudiado dicha influencia y la compensación de la misma, particularizando en variaciones del estado de carga y temperatura. La compensación de dichos efectos se fundamenta en Redes Neuronales Artificiales (ANN) empleando datos experimentales procesados con la Transformada Chirplet. Los cambios en la geometría y en las propiedades del material respecto al estado inicial de la estructura (lo daños) provocan cambios en la forma de onda de las GLW (lo que denominamos característica sensible al daño o DSF). Mediante técnicas de tratamiento de señal se puede buscar una relación entre dichas variaciones y los daños, esto se conoce como SHM. Sin embargo, las variaciones en las EOC producen también cambios en los datos adquiridos relativos a las GLW (DSF) que provocan errores en los algoritmos de diagnóstico de daño (SHM). Esto sucede porque las firmas de daño y de las EOC en la DSF son del mismo orden. Por lo tanto, es necesario cuantificar y compensar el efecto de las EOC sobre la GLW. Si bien existen diversas metodologías para compensar los efectos de las EOC como por ejemplo “Optimal Baseline Selection” (OBS) o “Baseline Signal Stretching” (BSS), estas, se emplean exclusivamente en la compensación de los efectos térmicos. El método propuesto en esta tesis mezcla análisis de datos experimentales, como en el método OBS, y modelos basados en Redes Neuronales Artificiales (ANN) que reemplazan el modelado físico requerido por el método BSS. El análisis de datos experimentales consiste en aplicar la Transformada Chirplet (CT) para extraer la firma de las EOC sobre la DSF. Con esta información, obtenida bajo diversas EOC, se entrena una ANN. A continuación, la ANN actuará como un interpolador de referencias de la estructura sin daño, generando información de referencia para cualquier EOC. La comparación de las mediciones reales de la DSF con los valores simulados por la ANN, dará como resultado la firma daño en la DSF, lo que permite el diagnóstico de daño. Este esquema se ha aplicado y verificado, en diversas EOC, para una estructura unidimensional con un único camino de daño, y para una estructura representativa de un fuselaje de una aeronave, con curvatura y múltiples elementos rigidizadores, sometida a un estado de cargas complejo, con múltiples caminos de daños. Los efectos de las EOC se han estudiado en detalle en la estructura unidimensional y se han generalizado para el fuselaje, demostrando la independencia del método respecto a la configuración de la estructura y el tipo de sensores utilizados para la adquisición de datos GLW. Por otra parte, esta metodología se puede utilizar para la compensación simultánea de una variedad medible de EOC, que afecten a la adquisición de datos de la onda elástica guiada. El principal resultado entre otros, de esta tesis, es la metodología CT-ANN para la compensación de EOC en técnicas SHM basadas en ondas elásticas guiadas para el diagnóstico de daño. ABSTRACT One of the open problems to implement Structural Health Monitoring techniques based on elastic guided waves in real aircraft structures at operation is the influence of the environmental and operational conditions (EOC) on the damage diagnosis problem. This thesis deals with the compensation of these environmental and operational effects, specifically, the temperature and the external loading, by the use of the Chirplet Transform working with Artificial Neural Networks. It is well known that the guided elastic wave form is affected by the damage appearance (what is known as the damage sensitive feature or DSF). The DSF is modified by the temperature and by the load applied to the structure. The EOC promotes variations in the acquired data (DSF) and cause mistakes in damage diagnosis algorithms. This effect promotes changes on the waveform due to the EOC variations of the same order than the damage occurrence. It is difficult to separate both effects in order to avoid damage diagnosis mistakes. Therefore it is necessary to quantify and compensate the effect of EOC over the GLW forms. There are several approaches to compensate the EOC effects such as Optimal Baseline Selection (OBS) or Baseline Signal Stretching (BSS). Usually, they are used for temperature compensation. The new method proposed here mixes experimental data analysis, as in the OBS method, and Artificial Neural Network (ANN) models to replace the physical modelling which involves the BSS method. The experimental data analysis studied is based on apply the Chirplet Transform (CT) to extract the EOC signature on the DSF. The information obtained varying EOC is employed to train an ANN. Then, the ANN will act as a baselines interpolator of the undamaged structure. The ANN generates reference information at any EOC. By comparing real measurements of the DSF against the ANN simulated values, the damage signature appears clearly in the DSF, enabling an accurate damage diagnosis. This schema has been applied in a range of EOC for a one-dimensional structure containing single damage path and two dimensional real fuselage structure with stiffener elements and multiple damage paths. The EOC effects tested in the one-dimensional structure have been generalized to the fuselage showing its independence from structural arrangement and the type of sensors used for GLW data acquisition. Moreover, it can be used for the simultaneous compensation of a variety of measurable EOC, which affects the guided wave data acquisition. The main result, among others, of this thesis is the CT-ANN methodology for the compensation of EOC in GLW based SHM technique for damage diagnosis.