Tesis:

Modelos de elementos finitos explícitos para explosiones en estructuras reticuladas de hormigón armado : aplicaciones al estudio del colapso de edificios


  • Autor: BERMEJO CASTRO, Mario

  • Título: Modelos de elementos finitos explícitos para explosiones en estructuras reticuladas de hormigón armado : aplicaciones al estudio del colapso de edificios

  • Fecha: 2016

  • Materia: Sin materia definida

  • Escuela: E.T.S. DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS

  • Departamentos: MECANICA DE MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS

  • Acceso electrónico: http://oa.upm.es/39078/

  • Director/a 1º: GOICOLEA RUIGÓMEZ, José María
  • Director/a 2º: SANTOS YANGUAS, Anastasio Pedro

  • Resumen: La frecuencia con la que se producen explosiones sobre edificios, ya sean accidentales o intencionadas, es reducida, pero sus efectos pueden ser catastróficos. Es deseable poder predecir de forma suficientemente precisa las consecuencias de estas acciones dinámicas sobre edificaciones civiles, entre las cuales las estructuras reticuladas de hormigón armado son una tipología habitual. En esta tesis doctoral se exploran distintas opciones prácticas para el modelado y cálculo numérico por ordenador de estructuras de hormigón armado sometidas a explosiones. Se emplean modelos numéricos de elementos finitos con integración explícita en el tiempo, que demuestran su capacidad efectiva para simular los fenómenos físicos y estructurales de dinámica rápida y altamente no lineales que suceden, pudiendo predecir los daños ocasionados tanto por la propia explosión como por el posible colapso progresivo de la estructura. El trabajo se ha llevado a cabo empleando el código comercial de elementos finitos LS-DYNA (Hallquist, 2006), desarrollando en el mismo distintos tipos de modelos de cálculo que se pueden clasificar en dos tipos principales: 1) modelos basados en elementos finitos de continuo, en los que se discretiza directamente el medio continuo mediante grados de libertad nodales de desplazamientos; 2) modelos basados en elementos finitos estructurales, mediante vigas y láminas, que incluyen hipótesis cinemáticas para elementos lineales o superficiales. Estos modelos se desarrollan y discuten a varios niveles distintos: 1) a nivel del comportamiento de los materiales, 2) a nivel de la respuesta de elementos estructurales tales como columnas, vigas o losas, y 3) a nivel de la respuesta de edificios completos o de partes significativas de los mismos. Se desarrollan modelos de elementos finitos de continuo 3D muy detallados que modelizan el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con un modelo constitutivo del hormigón CSCM (Murray et al., 2007), que tiene un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura. El acero se representa con un modelo constitutivo elastoplástico bilineal con rotura. Se modeliza la geometría precisa del hormigón mediante elementos finitos de continuo 3D y cada una de las barras de armado mediante elementos finitos tipo viga, con su posición exacta dentro de la masa de hormigón. La malla del modelo se construye mediante la superposición de los elementos de continuo de hormigón y los elementos tipo viga de las armaduras segregadas, que son obligadas a seguir la deformación del sólido en cada punto mediante un algoritmo de penalización, simulando así el comportamiento del hormigón armado. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF de continuo. Con estos modelos de EF de continuo se analiza la respuesta estructural de elementos constructivos (columnas, losas y pórticos) frente a acciones explosivas. Asimismo se han comparado con resultados experimentales, de ensayos sobre vigas y losas con distintas cargas de explosivo, verificándose una coincidencia aceptable y permitiendo una calibración de los parámetros de cálculo. Sin embargo estos modelos tan detallados no son recomendables para analizar edificios completos, ya que el elevado número de elementos finitos que serían necesarios eleva su coste computacional hasta hacerlos inviables para los recursos de cálculo actuales. Adicionalmente, se desarrollan modelos de elementos finitos estructurales (vigas y láminas) que, con un coste computacional reducido, son capaces de reproducir el comportamiento global de la estructura con una precisión similar. Se modelizan igualmente el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con el modelo constitutivo del hormigón EC2 (Hallquist et al., 2013), que también presenta un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura, y se usa en elementos finitos tipo lámina. El acero se representa de nuevo con un modelo constitutivo elastoplástico bilineal con rotura, usando elementos finitos tipo viga. Se modeliza una geometría equivalente del hormigón y del armado, y se tiene en cuenta la posición relativa del acero dentro de la masa de hormigón. Las mallas de ambos se unen mediante nodos comunes, produciendo una respuesta conjunta. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF estructurales. Con estos modelos de EF estructurales se simulan los mismos elementos constructivos que con los modelos de EF de continuo, y comparando sus respuestas estructurales frente a explosión se realiza la calibración de los primeros, de forma que se obtiene un comportamiento estructural similar con un coste computacional reducido. Se comprueba que estos mismos modelos, tanto los modelos de EF de continuo como los modelos de EF estructurales, son precisos también para el análisis del fenómeno de colapso progresivo en una estructura, y que se pueden utilizar para el estudio simultáneo de los daños de una explosión y el posterior colapso. Para ello se incluyen formulaciones que permiten considerar las fuerzas debidas al peso propio, sobrecargas y los contactos de unas partes de la estructura sobre otras. Se validan ambos modelos con un ensayo a escala real en el que un módulo con seis columnas y dos plantas colapsa al eliminar una de sus columnas. El coste computacional del modelo de EF de continuo para la simulación de este ensayo es mucho mayor que el del modelo de EF estructurales, lo cual hace inviable su aplicación en edificios completos, mientras que el modelo de EF estructurales presenta una respuesta global suficientemente precisa con un coste asumible. Por último se utilizan los modelos de EF estructurales para analizar explosiones sobre edificios de varias plantas, y se simulan dos escenarios con cargas explosivas para un edificio completo, con un coste computacional moderado. The frequency of explosions on buildings whether they are intended or accidental is small, but they can have catastrophic effects. Being able to predict in a accurate enough manner the consequences of these dynamic actions on civil buildings, among which frame-type reinforced concrete buildings are a frequent typology is desirable. In this doctoral thesis different practical options for the modeling and computer assisted numerical calculation of reinforced concrete structures submitted to explosions are explored. Numerical finite elements models with explicit time-based integration are employed, demonstrating their effective capacity in the simulation of the occurring fast dynamic and highly nonlinear physical and structural phenomena, allowing to predict the damage caused by the explosion itself as well as by the possible progressive collapse of the structure. The work has been carried out with the commercial finite elements code LS-DYNA (Hallquist, 2006), developing several types of calculation model classified in two main types: 1) Models based in continuum finite elements in which the continuous medium is discretized directly by means of nodal displacement degrees of freedom; 2) Models based on structural finite elements, with beams and shells, including kinematic hypothesis for linear and superficial elements. These models are developed and discussed at different levels: 1) material behaviour, 2) response of structural elements such as columns, beams and slabs, and 3) response of complete buildings or significative parts of them. Very detailed 3D continuum finite element models are developed, modeling mass concrete and reinforcement steel in a segregated manner. Concrete is represented with a constitutive concrete model CSCM (Murray et al., 2007), that has an inelastic behaviour, with different tension and compression response, hardening, cracking and compression damage and failure. The steel is represented with an elastic-plastic bilinear model with failure. The actual geometry of the concrete is modeled with 3D continuum finite elements and every and each of the reinforcing bars with beam-type finite elements, with their exact position in the concrete mass. The mesh of the model is generated by the superposition of the concrete continuum elements and the beam-type elements of the segregated reinforcement, which are made to follow the deformation of the solid in each point by means of a penalty algorithm, reproducing the behaviour of reinforced concrete. In this work these models will be called continuum FE models as a simplification. With these continuum FE models the response of construction elements (columns, slabs and frames) under explosive actions are analysed. They have also been compared with experimental results of tests on beams and slabs with various explosive charges, verifying an acceptable coincidence and allowing a calibration of the calculation parameters. These detailed models are however not advised for the analysis of complete buildings, as the high number of finite elements necessary raises its computational cost, making them unreliable for the current calculation resources. In addition to that, structural finite elements (beams and shells) models are developed, which, while having a reduced computational cost, are able to reproduce the global behaviour of the structure with a similar accuracy. Mass concrete and reinforcing steel are also modeled segregated. Concrete is represented with the concrete constitutive model EC2 (Hallquist et al., 2013), which also presents an inelastic behaviour, with a different tension and compression response, hardening, compression and cracking damage and failure, and is used in shell-type finite elements. Steel is represented once again with an elastic-plastic bilineal with failure constitutive model, using beam-type finite elements. An equivalent geometry of the concrete and the steel is modeled, considering the relative position of the steel inside the concrete mass. The meshes of both sets of elements are bound with common nodes, therefore producing a joint response. These models will be called structural FE models as a simplification. With these structural FE models the same construction elements as with the continuum FE models are simulated, and by comparing their response under explosive actions a calibration of the former is carried out, resulting in a similar response with a reduced computational cost. It is verified that both the continuum FE models and the structural FE models are also accurate for the analysis of the phenomenon of progressive collapse of a structure, and that they can be employed for the simultaneous study of an explosion damage and the resulting collapse. Both models are validated with an experimental full-scale test in which a six column, two floors module collapses after the removal of one of its columns. The computational cost of the continuum FE model for the simulation of this test is a lot higher than that of the structural FE model, making it non-viable for its application to full buildings, while the structural FE model presents a global response accurate enough with an admissible cost. Finally, structural FE models are used to analyze explosions on several story buildings, and two scenarios are simulated with explosive charges for a full building, with a moderate computational cost.