<< Volver atrás

Tesis:

Propuesta de una interfaz cognitiva para la exploración distante de entornos virtuales como ayuda a las personas ciegas durante la creación de mapas cognitivos


  • Autor: COBO SÁNCHEZ DE ROJAS, Antonio

  • Título: Propuesta de una interfaz cognitiva para la exploración distante de entornos virtuales como ayuda a las personas ciegas durante la creación de mapas cognitivos

  • Fecha: 2018

  • Materia: Sin materia definida

  • Escuela: E.T.S. DE INGENIEROS DE TELECOMUNICACION

  • Departamentos: TECNOLOGIA FOTONICA Y BIOINGENIERIA

  • Acceso electrónico: http://oa.upm.es/52403/

  • Director/a 1º: SERRANO OLMEDO, José Javier

  • Resumen: El desempleo entre las personas ciegas y con deficiencia visual es muy alto (70%). Estas cifras no son más altas gracias al esfuerzo de organizaciones como la ONCE, que provee gran cantidad de servicios para la inclusión en el mercado laboral ordinario, además de impulsar el mercado laboral protegido, a través de sus filiales. Las exigencias del propio entorno, ya sea en el lugar de trabajo o durante el trayecto al mismo, están catalogadas como una de las principales barreras para las personas ciegas a la hora de conseguir un trabajo o mantenerlo. En concreto, las actividades basadas en habilidades de orientación y movilidad (O&M) (es decir cartografía cognitiva, wayfinding, y navegación) son particularmente difíciles para ellos. La disponibilidad de tecnologías y ayudas adaptadas está catalogada como una de las 3 mejores soluciones a estos retos. La evidencia científica apoya la idea de que la cognición espacial es compatible con la ceguera. Además, la prevalencia de la experiencia de la visión entre las personas ciegas y con discapacidad visual se puede considerar alta. A nivel simbólico, hay tres tipos de conocimiento espacial, siendo el conocimiento de configuraciones (del inglés survey knowledge) el más completo y poderoso de entre los tres. La representación mental de una determinada región en dicho formato se conoce como mapa cognitivo. La cartografía cognitiva (del inglés cognitive mapping) es el proceso de adquisición de conocimiento espacial. Se puede realizar mediante dos métodos diferentes: el aprendizaje basado en rutas (es decir, explorar físicamente un entorno para aprender su trazado) y el aprendizaje basado en configuraciones (es decir, el aprendizaje de un entorno sin la necesidad de la locomoción). Las habitaciones son por lo general espacios de pequeño tamaño que pueden ser inspeccionados en su totalidad sin necesidad de moverse. Tales espacios de pequeño tamaño se denominan espacios de vista (del inglés vista spaces). Sin embargo, las personas ciegas se ven forzadas a utilizar el aprendizaje basado en rutas incluso en espacios de vista. Tanto las personas videntes como las personas ciegas, pueden adquirir conocimiento espacial en un entorno virtual y aplicarlo en el espacio físico equivalente. Por lo tanto, se ha propuesto utilizar visitas a simulaciones de espacios reales en realidad virtual como un medio para que las personas ciegas aprendan la disposición de los obstáculos dentro de una estancia, antes de visitarlos presencialmente. Esos entornos virtuales se exploran de acuerdo con un enfoque de proximidad (es decir, hacer que un avatar replique en el mundo virtual el aprendizaje basado en rutas que la persona ciega haría en el mundo físico). Dentro de la presente disertación, se presenta una herramienta de cartografía cognitiva basada en un enfoque de exploración a distancia. Un enfoque de exploración a distancia permite a las personas ciegas explorar una habitación entera desde un único punto de observación. Dicha herramienta consta de dos interfaces complementarias. Por un lado, una interfaz cognitiva, que es el foco de la presente disertación, conocido como el foco de atención, que permite que las personas ciegas controlen dónde quieren dirigir su atención; y por otro lado, una interfaz sensitiva, responsable de proporcionar retroalimentación. Esta herramienta de cartografía cognitiva se ha implementado en forma de videojuego de realidad virtual para smartphone. Se formuló la hipótesis de que la exploración distante mejora la eficacia y eficiencia del proceso de exploración sin un impacto perjudicial en la calidad y utilidad de los mapas cognitivos resultantes. Los mapas cognitivos no se pueden observar directamente, para evaluarlos es necesario que las personas construyan una representación externa de los mismos, como un dibujo, una maqueta, o una descripción verbal; el resultado de esta exteriorización se conoce como producto espacial. Se ha empleado una técnica configuracional que proporciona un conjunto de puntos bidimensionales que describen la distribución de obstáculos en el mapa cognitivo. Una regresión bidimensional es capaz de dar cuenta de los niveles de similitud entre dos conjuntos de puntos bidimensionales, sin embargo, no soporta la fuga de datos (del inglés missing data). Por lo tanto, se definió un índice novedoso para la evaluación de la calidad de los mapas cognitivos. Dicho índice de calidad se conoce como el Spatial Understanding Quality Index (SUQI). Se define como la distancia de Mahalanobis entre dos vectores de cuatro dimensiones que representan un producto espacial y la escena original, respectivamente. Al estar basado en el uso de la distancia de Mahalanobis, se requiere una estimación de una matriz de covarianza calculada a partir de los elementos de un conjunto representativo de productos espaciales. Se formuló la hipótesis de que un conjunto de productos espaciales de una habitación en particular, es válido para evaluar correctamente la calidad de productos espaciales que representan habitaciones diferentes de aquella. Se llevó a cabo un estudio transversal entre-sujetos (estudio e-Glance), en el que diecinueve personas con ceguera total exploraron tres espacios virtuales de complejidad similar. Los participantes exploraron individualmente cada espacio virtual con un tipo diferente de configuración del foco de atención, esto es, exploración de proximidad (noFoA), foco esférico (sFoA), y foco plano (fFoA). Además, tres evaluadores independientes clasificaron los cincuenta y cuatro productos espaciales del conjunto de datos del estudio e-Glance en función de su similitud con su escena original correspondiente. La evidencia corrobora la hipótesis de que la eficacia mejora debido a la exploración distante (p-value = 0,0006). La configuración distante fFoA conlleva una reducción del 53% en el tiempo de descubrimiento (p-value = 0,0027). Se observa una tendencia que supone una reducción del 38% en la duración total de la etapa de exploración para una configuración de foco plano (p-value = 0,067). La efectividad a la hora de detectar las paredes altera la duración de la exploración (p-value = 0,012). Las mejoras en la eficacia y el tiempo de descubrimiento están asociadas a un menor tiempo total de exploración. La duración de la exploración después del tiempo de descubrimiento depende de la eficacia a la hora de detectar las paredes. Los beneficios de una configuración de exploración a distancia no son suficientes para construir mejores mapas cognitivos. En comparación con la evaluación humana, la fiabilidad entre evaluadores (IRR) del SUQI es excelente: ICC(A, 1) = 0,999, IC del 95% (0,997, 0,999); La IRR de la distancia euclídea es de moderada a buena: ICC(A, 1) = 0,794, IC del 95% (0,669, 0,875); y la IRR de la colocación de puntos de referencia es moderada: ICC(A, 1) = 0,720, IC del 95% (0,561, 0,828). La IRR entre las diferentes estimaciones de la matriz de covarianza es de buena a excelente: ICC(A, 1) = 0,886, IC del 95% (0,825, 0,929). Los resultados de la evaluación de los productos espaciales con el SUQI son, por lo tanto, equivalentes a los obtenidos por evaluadores humanos; y esto es así porque, a diferencia de la distancia euclídea, el SUQI tiene en cuenta las diferencias de variabilidad entre las diferentes características representativas de los mapas cognitivos. El mapa cognitivo de una escena se puede evaluar con una matriz de covarianza basada en una escena diferente. ----------ABSTRACT---------- Unemployment among blind and visually impaired people is very high (70%). These figures are not higher thanks to the effort of organizations such as ONCE, which provides a great number of services for blind people inclusion into the ordinary labour market, in addition to driving the protected labour market, via its subsidiary organizations. The demands from the environment itself, either at the workplace or during commute, were identified to be a major barrier for blind people to get or maintain a job. In particular, activities based on orientation and mobility (O&M) skills (i.e., cognitive mapping, wayfinding, and navigation) are particularly challenging for them. The availability of adapted technologies and aids was identified as one of the top 3 solutions to said challenge. Scientific evidence supports the idea of spatial thought being compatible with blindness. In addition, the prevalence of vision experience among blind and visually impaired people can be presumed to be high. At a symbolic level, there are three types of spatial knowledge, being survey knowledge the most complete and powerful among all three of them. The mental representation of a given piece of survey knowledge is referred to as a cognitive map. Cognitive mapping is the process of acquiring spatial knowledge. There are two cognitive mapping methods: route-based learning (i.e., physically explore an environment to learn its layout) and survey-based learning (i.e., learning an environment without the need of locomotion). Rooms are usually small-scale spaces that can be inspected in their entirety with no need of locomotion. Such small-scale spaces are referred to as vista spaces. However, blind people are compelled to use route-based learning even in vista spaces. Both sighted and blind people can acquire spatial knowledge in a virtual environment and apply it in the corresponding physical space. Thus, visits to simulations of real spaces in virtual reality have been proposed as a means for blind people to gain spatial knowledge regarding the disposition of obstacles in a place before they actually visit its physical location. Those virtual environments are explored according to a proximity approach (i.e., making an avatar to mimic route-based learning). Within the present thesis dissertation, a cognitive mapping tool based on a distant exploration approach is presented. A distant exploration approach allows blind people for exploring an entire room from a single observation point. Said tool consists of two complementary interfaces. On the one hand, a cognitive interface, which is the focus of the present thesis dissertation, referred to as the spotlight, for blind people to control where they want to direct their attention; and on the other hand, a sensitive interface, responsible for providing feedback. This cognitive mapping tool is implemented in the form of a virtual reality video-game for smartphones. It was hypothesised that distant exploration improves efficacy and efficiency of the exploration process without a detrimental impact on the quality or usefulness of the resulting cognitive maps. Cognitive maps are not directly observable, in order to assess their quality, people must build an external representation of them, such as a drawing, a model, or a verbal description; the resulting outcome is referred to as a spatial product. A configurational technique was used; thus, it was possible to produce a set of two-dimensional points describing the spatial layout in the cognitive map. Bidimensional regression is able to account for similarity levels between two planar points-layouts; however, it does not deal well with missing data. Thus, a novel index for the assessment of cognitive-map quality was defined as well. Said quality index is referred to as the Spatial Understanding Quality Index (SUQI). It was defined as the Mahalanobis distance between two four-dimensional vectors representing a spatial product and the original scene, respectively. Being based on the use of the Mahalanobis distance, it is required an estimation of a covariance matrix computed from the elements of a representative set of spatial products. It was hypothesised that a set of spatial products of a single particular room is valid to correctly assess the quality of spatial products representing different rooms. A within-subjects cross-sectional study, where nineteen totally blind people explored three virtual spaces of similar complexity, was conducted. Participants individually explored each virtual space with a different type of spotlight configuration, namely, proximity exploration (noFoA), spherical spotlight (sFoA), and flat spotlight (fFoA). In addition, three independent evaluators ranked all fifty-four spatial products in the eGlance-study dataset according to their similarity to their corresponding original scene. Evidence supports effectiveness improvements due to distant exploration (p-value=0.0006). The fFoA distant-configuration entails a 53% reduction in discovery time (p-value= 0.0027). A trend is observed entailing a 38% reduction in the duration of the overall exploration stage for a flat spotlight configuration (p-value=0.067). Wall-detection effectiveness alters exploration duration (p-value = 0.012). Improvements in effectiveness and discovery time are associated with shorter overall exploration time. Exploration duration after discovery time depends on wall-detection effectiveness. Benefits from a distant exploration configuration are not enough to build better cognitive maps. Compared to human assessment, inter-rater reliability (IRR) of the SUQI was excellent: ICC(A, 1) = 0.999, 95% CI (0.997, 0.999); IRR of the Euclidean distance was moderate to good: ICC(A, 1) = 0.794, 95% CI (0.669, 0.875); and IRR of landmark placement was moderate: ICC(A, 1) = 0.720, 95% CI (0.561, 0.828). IRR between different estimations of the covariance matrix was good to excellent: ICC(A, 1) = 0.886, 95% CI (0.825, 0.929). Thus, the results from spatial-product assessment with the SUQI are equivalent to those obtained from human assessment; and that is so because, conversely to Euclidean distance, the SUQI accounts for variability differences across cognitive-map features. The cognitive map of a scene can be assessed with a covariance matrix based on a different scene.