Tesis:

Achromatic Doublet on Glass Fresnel lenses for Concentrator Photovoltaic Systems


  • Autor: VALLEROTTO, Guido

  • Título: Achromatic Doublet on Glass Fresnel lenses for Concentrator Photovoltaic Systems

  • Fecha: 2019

  • Materia: Sin materia definida

  • Escuela: E.T.S. DE INGENIEROS DE TELECOMUNICACION

  • Departamentos: ELECTRONICA FISICA

  • Acceso electrónico: http://oa.upm.es/55674/

  • Director/a 1º: ANTÓN HERNÁNDEZ, Ignacio
  • Director/a 2º: VICTORIA PÉREZ, Marta

  • Resumen: En los últimos años, el aumento constante de la demanda energética, junto con un incremento en la preocupación por el cuidado del medio ambiente, han resultado en grandes avances en el campo de las energías renovables. Entre ellas, la energía fotovoltaica (PV del inglés photovoltaic) se ha expandido rápidamente por todo el mundo, consiguiendo un coste de la electricidad (LCOE del inglés levelized cost of electricity) comparable y en muchos casos inferior al de otras tecnologías convencionales basadas en combustibles fósiles. Dentro del campo de la energía solar cabe destacar el papel de la energía solar fotovoltaica de concentración (CPV del inglés concentrator photovoltaic), cuya eficiencia es la más alta de entre todas las tecnologías PV existentes, con un módulo récord del 43 % en el año 2016. En este contexto, esta tesis está basada en el desarrollo, fabricación y caracterización de una nueva óptica para aplicaciones CPV, capaz de incrementar la máxima concentración alcanzable, además de aumentar la tolerancia a los posibles errores de ensamblaje, seguimiento, temperatura y variación del espectro solar, manteniendo al mismo tiempo costes competitivos. Actualmente, la mayoría de módulos CPV en el mercado, están basados en lentes de Fresnel híbridas de silicona sobre vidrio (SoG del inglés silicone on glass). Esta tecnología debe su éxito principalmente a su excelente estabilidad en el exterior, así como a la sencillez de su proceso de fabricación. Sin embargo, tiene una limitación muy importante: la aberración cromática. Este fenómeno hace que la luz de diferentes longitudes de onda se enfoque a distintas distancias de la lente, limitando la concentración máxima alcanzable a un factor de poco más de 200 soles, sin pérdida significativa de luz. Para atenuar este efecto, los módulos CPV pueden incluir un elemento óptico secundario (SOE del inglés secondary optical element) acoplado a la célula fotovoltaica, que consigue aumentar la concentración y, al mismo tiempo, contribuir a una mayor uniformidad de la luz sobre la célula. Sin embargo, la implementación del SOE en el módulo CPV tiene ciertas desventajas inherentes, como la introducción de una nueva fuente de pérdidas o costes adicionales de fabricación y ensamblaje del propio SOE. En el trabajo llevado a cabo en esta tesis, el objetivo principal es el desarrollo de un nuevo concepto de lente de Fresnel acromática de bajo coste para aplicaciones fotovoltaicas de alta concentración, llamada doblete acromático sobre vidrio (ADG del inglés achromatic doublet on glass). La tecnología de lentes propuesta, gracias al diseño acromático, consigue una atenuación del fenómeno de la aberración cromática, permitiendo aumentar la máxima concentración alcanzable, sin la necesidad de implementar la óptica segundaria, lo que conlleva una serie de beneficios desde el punto de vista económico y de fiabilidad. El diseño de la lentes consiste en un sustrato rígido de vidrio y en una lente de plástico con dientes de Fresnel en ambas caras pegados entre si mediante un material elastomérico. Eligiendo un par de materiales con propiedades ópticas adecuadas, el concepto de doblete acromático delgado se ha podido poner en práctica, manteniendo además costes bajos gracias a la sencillez del proceso de fabricación. De hecho, la fabricación de la pieza de plástico es realizable por procesos ya desarrollados en la industria como: inyección de plástico, inyección a compresión, o estampado en caliente. Por último, el proceso de fabricación acaba con la realización de la lente ADG por laminación, un proceso con características muy similares al comúnmente usado para laminar los módulos fotovoltaicos planos. En la primera parte de la tesis, se presenta la investigación llevada a cabo sobre los posibles materiales utilizables en el proceso de fabricación de lentes ADG, y la explicación sobre los principales motivos que han conducido al desarrollo del diseño actual de lente propuesta. El estudio de optimización del par de materiales que producirían una mayor reducción del fenómeno de aberración cromática se ha desarrollado mediante simulaciones de trazado de rayos basadas en métodos de Montecarlo. De todos los materiales disponibles, finalmente se han seleccionado un elástomero termoplástico (TPE) y el policarbonato (PC) con alta transmisión en la región ultravioleta (UV) del espectro solar. Con esta configuración, las simulaciones de trazado de rayos predicen una eficiencia óptica relativa (es decir, una eficiencia óptica de ADG normalizada con la eficiencia óptica de una lente SoG usada como referencia) del 92.6 %, además, las simulaciones predicen también una concentración máxima alcanzable con las lentes ADG del doble que para las SoG. Además, se ha hecho uso asimismo de las simulaciones para entender la tolerancia a los posibles errores de fabricación en la estructura de la lente, con objeto de definir los requisitos de calidad necesarios para conseguir una alta eficiencia en términos ópticos. Una vez definidos estos estándares, se estableció el método de fabricación de lentes ADG y se llevó a cabo la fabricación de una laminadora necesaria para laminar las lentes en el Instituto de Energía Solar, en la Universidad Politécnica de Madrid (IES-UPM). Se realizaron un gran número de prototipos que fueron caracterizados en el laboratorio del IES-UPM, demostrando experimentalmente desde el comienzo el comportamiento acromático de los prototipos, y consecuentemente, la viabilidad del concepto. Más tarde, el trabajo se centró en la optimización de los prototipos de ADG, realizándose tres generaciones distintas. En la primera generación, la eficiencia óptica relativa conseguida fue del 85.5 %. Desde entonces, se han optimizado aspectos tales como el diseño y el procedimiento de fabricación para conseguir llegar, en la tercera generación, a una eficiencia relativa del 89.4 %, muy cercana al valor límite teórico predicho por trazado de rayos. Si comparamos la tercera generación con la primera, la tercera tiene un diseño mejorado, nuevos materiales con una mayor transmisión, un tratamiento de la superficie cuyo objetivo es mejorar la adhesión de los materiales, y un equipo de fabricación completamente automático. Por otra parte, también ha sido objeto de esta tesis el estudio de los mayores retos derivados de la fabricación de arrays compuestos de lentes ADG. El principal obstáculo, ha sido la ausencia de un molde capaz de inyectar el parqué de lentes de plástico de una sola vez. No obstante, se han llevado a cabo satisfactoriamente la laminación y caracterización de numerosos parqué, compuestos de numerosas lentes pegadas manualmente de forma individual, obteniendo eficiencias tan solo un 1 − 2 % menores que las conseguidas durante la realización de unidades elementales compuestas de una sola lente. El principal motivo de esta reducción de eficiencia, es la alta dispersión de valores de eficiencia medidos, que es causado por las limitaciones intrínsecas del pegado manual de las lentes que componen el array, y por posibles efectos de borde durante el proceso de laminación. Sin embargo, estas limitaciones podrían evitarse fácilmente en una línea de producción a gran escala. Finalmente, se ha llevado a cabo el ensamblaje y la caracterización en el exterior de módulos fotovoltaicos completos con células de triple unión (3J) de alta eficiencia durante un periodo de tiempo de más de cuatro meses. Los módulos ensamblados fueron dos. El primero de ellos, un mono-módulo, es un sistema compuesto de una lente de Fresnel ADG con una célula solar 3J, mientras el segundo es un módulo de grande superficie compuesto por 10x5 lentes con las correspondientes células 3J. Por un lado, el mono-módulo se usó para destacar el potencial de la tecnología ADG y obtener los mejores resultados posibles alcanzables con esta tecnología al nivel de desarrollo actual. Por otro lado, el objetivo del montaje del módulo completo fue la demostración de la viabilidad de la tecnología ADG que, en tan solo tres años y medio, ha conseguido ser desarrollada experimentalmente y satisfactoriamente caracterizada. La caracterización del módulo demostró, no solo que el diseño acromático es capaz de alcanzar mayores niveles de concentración, sino también que contribuye a la reducción de su sensibilidad a las condiciones ambientales tales como la temperatura o el espectro solar. En los últimos meses, se ha llevado a cabo también un análisis de costes de la tecnología desarrollada para probar si la tecnología ADG, además de las ventajas tecnológicas ya demostradas, es capaz de resultar en un ahorro económico significativo. En este caso, teniendo en cuenta la reducción en coste por los materiales usados, cuyo precio es menor que el de la silicona óptica usada comúnmente en las lentes de Fresnel convencionales, y el mayor rendimiento energético anual derivado de la mayor estabilidad térmica y espectral, ha sido demostrado asimismo que la contribución del coste de las lentes al LCOE es significativamente menor en el caso de las lentes ADG en comparación con las lentes SoG. Esta diferencia podría llegar a resultar incluso mayor, si un escenario de alta concentración fuera considerado. ----------ABSTRACT---------- In the last years, the constantly growing energy demand of the population on earth, together with the increasingly topical environmental ethics, resulted in relevant advances in the field of the renewable energy sources. Among them, photovoltaic (PV) energy is one of the most widespread around the world and has often achieved a levelized cost of electricity (LCOE) comparable with conventional fossil fuels. Within this field, a special interested is dedicated to the concentrator photovoltaic (CPV) technology, whose measured efficiencies are the highest among all the existing PV technologies, achieving the record efficiency of 43 % in 2016. This thesis is dedicated to the development, manufacturing, and characterization of a novel optics for CPV applications capable of either increase the maximum attainable concentration or to widen the tolerance to assembly errors, tracking, temperature, and spectral variation, while simultaneously maintaining competitive costs. Nowadays, most of the CPV modules in the market are based on hybrid silicone on glass (SoG) Fresnel lenses. Such technology, whose success has been ensured by its excellent stability under outdoor exposition and by the easiness of the processing required for the manufacturing, has an important limitation: the chromatic aberration. Such phenomenon causes light with different wavelength to focus at different distances from the lens, limiting the maximum attainable concentration to a factor of slightly more than 200 suns, if no light spillage is assumed. In modern CPV module, a secondary optical element (SOE) is commonly coupled with the solar cell in order to increase the concentration and, at the same time, smooth the spectral distribution of the light over the cell. The implementation of SOE in a CPV module, apart from introducing a new source of losses or fails, results in additional costs due to manufacturing, assembly, etc. of the SOE itself. The work carried out in this thesis aims to the development of an novel cost-effective achromatic lens for CPV applications, named achromatic doublet on glass (ADG) Fresnel lens. The proposed lens technology, thanks to the achromatic design resulting in a reduced chromatic aberration, allows to increase the maximum attainable concentration and to smooth the spectral distribution of the light, without the implementation of a SOE, with obvious benefits from the financial and the reliability points of view. The lens design consists in a rigid glass substrate on which a plastic piece featuring Fresnel grooves on both its sides is glued using an elastomeric materials. As a consequence, by choosing the pair of materials with the adequate optical properties, the well-known concept of a thin achromatic doublet can be applied, while maintaining low costs thanks to the simple manufacturing process. In fact, the plastic piece is manufactured using high reliable industrial processes such as injection molding, compression molding, or hot embossing. Finally, the ADG sandwich is obtained by lamination, which is envisaged to be similar to the method commonly used to laminate conventional flat PV modules. In the first part of the thesis, a comprehensive investigation over the materials that may be potentially used to manufacture ADG lenses is presented, together with the reasons which led to the current ADG design. Ray-tracing simulations based on Montecarlo method have been used as a tool to assess which pair of materials provided the strongest reduction of the chromatic aberration. Among all the materials available, a thermoplastic elastomer (TPE) and the polycarbonate (PC) with high transmission in the ultraviolet (UV) region have been selected. With this configuration, ray-tracing simulations predicted a relative optical efficiency (i.e. the ADG optical efficiency normalized with the optical efficiency of a reference SoG lens used as benchmark) of 92.6 % and, in addition, the maximum attainable concentration of the simulated ADG lens is the double than the concentration simulated for the SoG lens. Furthermore, the simulations results have been used to understand the tolerance of the lens structure to manufacturing errors with the purpose of understanding what is the quality required in order to achieve a high performance optics. Afterwards, the method for manufacturing ADG lenses was defined and the required equipment (a laminator machine) was manufactured ad-hoc at the laboratory of the Solar Energy Institute, Technical University of Madrid (IES-UPM). A huge number of prototypes were manufactured and characterized at the IES-UPM laboratory, experimentally demonstrating from the beginning the achromatic behavior of the prototypes and, consequently, the feasibility of the concept. Later, the work focused on the optimization of the ADG prototypes. Three ADG generations have been developed. From the first generation, whose measured relative optical efficiency is equal to 85.5 %, many things have been optimized in order to achieve, for the third generation, the relative efficiency value of 89.4 %, which is close to the theoretical limit value predicted by ray-tracing. The third generation with respect to the first includes an improved design, new materials with enhanced transmission, a surface treatment aimed to enhance the adhesion between the materials of the sandwich, and a completely automated machinery used in the manufacturing process. Also, the challenges deriving from the manufacturing of arrays composed of many ADG lenses have been studied in the thesis. The main obstacle was the absence of a mold designed to inject the parquet of plastic all in once. Nonetheless, manually gluing the individual lenses, several parquets composed of many lenses have been successfully laminated and characterized resulting an overall efficiency only 1 − 2 % lower than the elementary units composed of one individual lens. The main reason of the efficiency reduction is the high dispersion of the measured efficiency values, which in turn is caused by the handmade procedure employed to glue together all the lenses composing the array and by a possible border effect during the lamination. However, both these limitations would be easily avoided in a utility-scale production line. Finally, complete CPV modules including modern high-efficiency triple-junction (3J) solar cell have been assembled and measured outdoor over a time lapse of more than four months. Two modules were assembled. The first is a mono-module, i.e. a system composed of one ADG Fresnel lens and one 3J solar cell, while the second is a full area module composed of 10x5 lenses and as many 3J solar cells. The mono-module was used in order to highlight the potential of the ADG technology and to obtain the best possible results attainable with the current development level. Conversely, the full module was needed to show that the ADG technology is actually possible and that, in only three years and a half of development, was already conceptually demonstrated and experimentally tested in relevand industrial environment. The characterization of the module demonstrated that the achromatic design, apart from providing a higher concentration, contributes to reduce the sensitivity of the module to ambient conditions such as temperature and spectrum. In the last months, a cost analysis of the developed technology is carried out in order to prove that the ADG technology, apart from the technological advantages already remarked, provides also a significant economic saving. The pair of materials selected are cheaper than the silicone used for conventional Fresnel lenses. This, together with the enhanced annual energy yield provided by the improved thermal and spectral stability, demonstrated that the contribution of the lens cost to the LCOE is significantly lower for the ADG lens than for te SoG lens. Such difference results to be even higher if a high concentration scenario is considered.